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1 Introduction

This document is intended to give users of GEMS an understanding of the process
for estimating the parameters of GEMS real world models. The document contains
some high level background information aimed at a moderately technical audience,
and some more detailed mathematical content aimed at reasonably expert readers.The
information pertains only to the GEMS Expert View Parameterisation and not custom
calibration that may have been created using tools supplied by Conning or any other
method.

The estimation of the model parameters brings GEMS to life and allows control of
the model output to ensure that the models span the maximum range of real world
dynamics that are displayed in the market data as well as adequately capturing future
events yet to be observed. The estimation of a model is a multi step process, but two
considerations are central to the process;

e Target Setting: Analysis of the historical data record combined with expert
judgment and economic analysis is used to determine what the desired statistical
properties of the model should be (e.g. long term or ”steady state” mean, stan-
dard deviation etc.). Target setting involves analysing 25-30 years of historical
data and applying expert judgment to determine the statistical properties that
are most relevant to the current market. Target setting follows a well defined
process which removes as much observer bias as possible.

e Dynamics: Information from the historical record is used to determine the
desirable dynamics that simulated data should exhibit (e.g. yield curve shapes,
mean reversion properties, jump frequencies and severity etc.). Model parameters
governing dynamics are determined using analytical methods constrained on the
targets and using 25-30 years of data where available.

These two considerations are related, and parameter estimation is performed in such a
way as to simultaneously match the targets and produce realistic dynamics. In reality
there is likely to exist a large number of parameter combinations which will match the
model targets reasonably. Which combination of factors one chooses is vital, as this will
govern how realistic the model is, and how well it is likely to perform out of sample.
Fortunately for the models implemented within GEMS, a range of well understood
analytical methods exists to determine the most appropriate and likely combination of
parameters given the information contained within time series data.

To effect estimation and validation Conning has created a special purpose environment
comprised of both automated and interactive processes including:

e Time Series Database: down loads the relevant economic and financial data on a
daily basis. This database includes very long histories of data (> 100 years) for
some variables.

e Estimator: automated estimation of model parameters.
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Figure 1. GEMS parameter estimation and validation process.

e Validator: a tool to check GEMS output against the historical record.

A schematic diagram of the process is shown in figure 1. In the following sections the
estimation aspects are explained in more detail.

1.1 Economic Historical Data Base

Conning maintains a time series database (TSDB) that contains all the relevant mar-
ket data that is used for estimating the GEMS parameters. The market data in the
database is updated on a daily, a monthly or a quarterly basis (depending on the
kind of data) with automated feeds from market data vendors (e.g. Bloomberg). The
database is supplemented with deep histories.

If automated update process fails, for example some time series data is missing, then
the automated updating application will try to retrieve the data over the next few days
by generating further data request messages. If all these fail, the GEMS team gets an
automated alert and the problem is managed manually.

The database is stored on a server in Hartford, Connecticut. It is mirrored on a daily
basis on a server in Cologne.

1.2 Estimator

The estimator takes a combination of market data and target data and uses this in-
formation to determine the model parameters that represent the best fit to both. The
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following summarizes the methodology used to estimate the models discussed in this
report. Further information on the relevant theory can be found in the reference section
at the end of the report.

e Government Yield Curve: estimated using maximum likelihood in conjunc-
tion with a Kalman filter.

e Common stock: estimated using approximate maximum likelihood in conjunc-
tion with a Kalman filter.

e Corporate Yields and Spreads: estimated using a combination of maximum
likelihood, Kalman filter and moment fitting.

Once estimation is complete, the parameters have to be made available to GEMS. This
is accomplished with an application called the ‘Populator’ that loads the estimated
parameters and historical data into a definition file that can be used within GEMS and
ADVISE. In the following sections an introduction to the main principles of maximum
likelihood estimation and the Kalman filter is given.

2 Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is a standard approach to estimating model
parameters in statistics. MLE is used in a wide variety of fields and is a powerful
analytical technique for inferring the parameters of a model from a set of sample data.
MLE is used because it has many optimal properties for parameter estimation namely:

e Sufficiency - the complete information about a given parameter of interest is
contained in its MLE estimator.

e Consistency - the true parameter value that generated the modeled data is
recovered asymptotically, (i.e. for sufficiently large data samples).

e Efficiency - the method delivers the lowest possible variance of parameter esti-
mates.

e Parameterization invariance - the solution to MLE is independent of the
parameterisation used.

The purpose of this section is to give users enough information to understand and ade-
quately describe the method both internally and to external bodies such as regulators.
More in depth information can be found in a number of reference materials given at
the end of this paper [1,2,3]. We now proceed to introduce the two key concepts, the
probability density function and the likelihood function, which must be understood
before MLE can be fully described.
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2.1 Probability Density Function

If we have a set of data represented by the 0.35 1

data vector y = (yi....ym), We can con- 03

sider this from a statistical standpoint a 025 |
random sample from an unknown popula- 02

tion. The goal is to produce a model that 3015
represents the population that is most 3z

likely to have generated the data. The 017
population can be conveniently thought 0.05 -

of in terms of its corresponding probabil- R E—

0 1 2 3 4 5 6 7 8 9 10

ity distribution. Each probability distri-
bution is associated with unique values of
the model parameters. As the parame- —n=10, w=0.2 —n=10, w=0.7
ters change in value, different probability
distributions will be generated. Formally,
a model can be defined as the group of
probability distributions spanned by the
model parameters.

Let f(y|lw) denote the probability density function (PDF) that defines the probability
of observing data y given the parameter vector w. The parameter vector w = (wj....wy,)
is defined on a multi-dimensional parameter space and contains all of the model param-
eters. If individual observations, y;, are independent of one another, then according to
probability theory, the PDF for the data y = (y;....ymm) given the parameter vector w
can be expressed as the product of PDFs for individual observations;

Observed Data y

Figure 2. Binomial probability density
functions for two parameterisations with
w=0.2 and w=0.7 and a sample size n=10

f= (W1, y2, - ym)|w) = fr(y1|w) f2(y2|w)... fin (Ym|w) (1)

As an illustrative example, consider a simple case with one observation and one model
parameter, that is, m = k = 1. Suppose that the data y represents the number of
successes in a sequence of 10 Bernoulli trials (e.g. tossing a biased coin 10 times) with
the probability of a success on any one trial, w, of 0.2. The PDF for this process is
given by;

ol
Y10 —y)!

where y = (0,1, ...,10) is the number of successes after the 10 trials. This is of course
the well known binomial distribution with parameters n = 10 and w = 0.2. The form
of this PDF is shown in figure 2 along with the distribution if the parameter value w
is changed to 0.7 in which case the PDF is given by;

Jlyln =10,w=02) 0.20.8'07¥ (2)

ol
Y10 —y)!

The PDF for this particular process can then be generalized for all admissible values
of w and n as;

f(yln =10,w =0.7) 0.7Y0.310-v (3)
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n!

fyln,w) = M=)

wh(1— w)" (4)
with (0 < w < 1;y = 0,1,...,n), which as a function of y gives the probability of
observing data y for a given value of n and w. The collection of all such PDF's generated
by varying the parameters across its admissible range (in this case 0 to 1 for w, n > 1)
defines the model of such a process.

2.2 Likelihood Function

For a model defined by a set of parame-

ter values, the PDF will show that some
03 - outcomes are more probable than oth-
ers. In the previous section, the PDF
with w = 0.2 implies the outcome y = 2
02 - (i.e. 2 successes) is more likely to occur
015 | than y = 5 (i.e. 5 successes) (0.302 vs.
0.026). In most practical modeling appli-
cations however (e.g. financial modeling),
0.05 | we have already observed the data. Ac-
cordingly, we must solve the inverse prob-

o 01 02 03 04 05 06 07 o8 oo 1  lem. Thatis, given the observed data and
005 Parameter a model, find the PDF (described by the
—n=10,y=7 model parameters), among all the proba-
bility densities that the model prescribes,
Figure 3.  Binomial probability density that is most likely to have produced the
functions for two parameterisations with ohservation. To solve this problem, we
w=0.2 and w=0.7 and a sample size n=10 must define a so called likelihood func-
tion. This is done by effectively reversing

the roles of the data vector y and the parameter vector w in f(y|w);

=7

Likelihood L{wn=10,y:
(=]
=

o

L(wly) = f(y|w) (5)

The likelihood function £(wly) represents the likelihood of the parameter w given the
observed data y. For the example of a process defined by a binomial distribution given
above, the likelihood function for y = 7 and n = 10 is given by;

10!
Lwn=10,y=7) = c—w' (1 —w)? (6)
with (0 <w < 1). The form of this likelihood function is shown in figure 3.

It is interesting to consider the differences between the PDF f(y|w) and the likelihood
function L£(wly), illustrated in figures 2 and 3. The main difference is that the functions
are defined on different axes, and therefore are not directly comparable to each other.
The PDF's in figure 2 are a function of the data y given a particular set of parameter
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values w. The likelihood function however, is a function of the parameter given a
particular set of observed data. In other words, the PDF tells us the probability of a
particular observation for a given parameter, whereas the likelihood function tells us the
likelihood of a particular parameter value for a given observed data set. In the example
above the likelihood function is a curve because there is only one unknown parameter.
For a model with two parameters, the likelihood function will be a surface on the
parameter space. In general, for a model with k parameters, the likelihood function
L(wl|y) takes the form of a k dimensional surface sitting above a k dimensional hyper
plane spanned by the parameter vector w = (wy....wy)

2.3 Parameter Estimation

Having introduced the concepts of the probability density function and likelihood func-
tion, it is now possible to extend the discussion to the analytical method for estimating
the parameters, w, of a model, given a set of sample data y, known as maximum like-
lihood estimation. Once data have been collected and the likelihood function of the
model is computed, statistical inferences can be made about the population, and the
probability distribution that underlies the data. Given that different parameter values
lead to different PDFs, we are interested in finding the parameter values that corre-
sponds to the population probability distribution.

The principle of maximum likelihood estimation (MLE) states that the desired prob-
ability distribution is the one that makes the observed data most likely. To put this
within the context of the above example, this means that we must find the parameter
vector that maximizes the likelihood function £(w|y). The resulting parameter vector,
referred to as the MLE estimate, is denoted by wy g = (Wi ppe..-wemre). In figure
3 for example, the MLE estimate is wy;g = 0.7, for which the value of the maximum
likelihood function is L(wyp = 0.7jn = 10,y = 7) = 0.267. The probability distri-
bution corresponding to this MLE estimate is shown in figure 2. Applying the MLE
principle implies that this is the population that is most likely to have generated the
observed data, y = 7. To summarize, maximum likelihood estimation is an analytical
method to find the model parameters which lead to the model producing a probability
distribution that makes the observed data most likely.

2.4 Maximizing the Likelihood Function

We now show an example of how in practice the MLE estimate is computed. It is
often convenient for the MLE estimate to be obtained by maximizing the log of the
likelihood function, In £L(w|y). Because the two functions, In L(w|y) and L(wl|y) are
monotonically related to each other, one would however obtain the same result by
maximizing either one. In order to maximize the log likelihood function we must find
the value of w which satisfies the following partial differential equation which is referred
to as the likelihood equation;

OlnL(wln)
T ou "

The information contained herein is Confidential and is subject to restrictions on disclosure. 8



(0 CONNING

at w; = w; ppp for all i = 1,..., k. The existence of and MLE estimate requires that
the above likelihood equation has a real solution. To ensure that £(wly) is a maximum
and not a minimum, an additional condition must be satisfied. To be a maximum, the
log-likelihood function should be a peak and not a trough in the parameter space local
to wyrp. This condition can be ascertained from the second derivatives of L(w]|y)
which will be negative at w; = w; ppp for i =1, ..., k;

O?InL(w|n)

2
ow;

<0 (8)

To illustrate the MLE procedure, consider the previous one-parameter binomial ex-
ample given a fixed value of n. First, taking the logarithm of the likelihood function
L(w|n =10,y = 7), we obtain the log likelihood;

10!
InC(wn =10,y =7) = lnﬁ + Tlnw + 3in(1 — w) 9)

We then calculate the first derivative of the log likelihood function;
dinL(wln =10,y =7) 7 3

= - — 10
dw w  1—w (10)

The MLE estimate is obtained as wy;,p = 0.7 by requiring this equation to be zero.
To make sure that the solution represents a maximum, not a minimum, the second
derivative of the log likelihood function is evaluated at w = w1 g;

d*IinL(wln) 7 3
Tdr wi d—wp (11)

which for w = wy; g = 0.7 takes a negative value as desired.

For more sophisticated models involving multiple parameters such as many of those
used in GEMS, it is usually not possible to obtain a precise analytic solution for the
MLE estimate. For these models the MLE estimate is found using numerical techniques
such as nonlinear optimization. These techniques allow for the optimal parameters to
be found, that maximize the log-likelihood.

3 The Kalman Filter

The Kalman filter is a mathematical method that provides an efficient means of recur-
sively estimating the parameters of a model based on a given data set. The method
comprises a set of well defined mathematical equations that together have some desir-
able properties applicable to a wide range of modeling problems including the modeling
of financial processes. In particular the model has the following useful properties:

e Computationally efficient method of describing the state of a system containing
both information and noise
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Figure 4. Schematic diagram of the data measurement and filtration problem.

e Produces an estimate that minimizes the mean square error of the estimator given
all information available

e Enables the estimation of models based on non observable state variables (e.g.
GEMS n-factor Affine model of the non defaultable term structure)

Kalman filter dynamics results from the consecutive cycles of predicting the state of
an observed variable based on a model, comparing that prediction with the realized
outcome in the historical or observed data and updating the parameters to achieve
optimal predictive power. The update step is referred to as filtering, hence the method
is referred to as a Kalman filter. The change to the filter at each iteration step,
represents the novel information conveyed to it by the last observation. A complete
description of the Kalman filter is beyond the scope of this document, but the following
sections should give the reader enough information to adequately explain the functional
use of the method as it pertains to the estimation of GEMS models. For further
information interested readers are directed to the resources listed in the bibliography
section of this document [4-12].

3.1 The Measurement and Filtration Problem

Figure 4, illustrates the problem that the Kalman Filter is designed to solve. A physical
system, (e.g. a given financial market) is driven by a set of external drivers or controls
(e.g. economic data, trading activity, market shocks etc.) and its outputs are measured
by an observer (e.g. a data vendor), such that knowledge of the systems behavior is
governed solely by the system controls and the observed or measured outputs. The

The information contained herein is Confidential and is subject to restrictions on disclosure.
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Figure 6. Schematic diagram of the parameter estimation methodology using Kalman
Filtering and Maximum Likelihood Method.

observations and measurements contain both ”true” information about the system, but
also the errors and uncertainties in the process, namely measurement noise (e.g. from
taking an average asset price across a number of brokers) and the system errors (e.g.
in financial markets from liquidity effects).

The filtration problem can be summarized as finding the estimate of a system’s state,
based on the available information (controls and observations) which optimizes some
defined criteria. Put another way, the problem is to find a filter which achieves the
aforementioned. It is beyond the scope of this document but in many situations re-
garding the efficient estimation of financial market models the optimal filtration can
be shown to be a Kalman Filter.

4 Kalman Filter and MLE for the Multi-Factor Square

Root Process

The Kalman filter and MLE can be used in practice for the estimation of a multi-factor
square root diffusion process such as that used in the non defaultable term structure
model of Cox, Ingersoll, Ross (CIR) upon which the GEMS model is based. The CIR
model takes the general form that the factors of the model evolve according to the
following dynamics:

dyi(t) = ki(0; — yi(t))dt + o4/ yi(t)dWi () (12)

The information contained herein is Confidential and is subject to restrictions on disclosure.
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A complete mathematical description of the process for estimating te parameters of
this model are described in [12] and the interested reader is directed to this source for
more details.

Briefly it is important to understand that since the factors themselves and the param-
eters (i.e. k,0 and o) are not directly observable in the market we must find a way
of estimating the most appropriate parameters by effectively mapping the unobserved
state variables onto the observed data, which in this case are the prices or equiva-
lently the yields of zero coupon bonds. The Kalman filter, enables us to perform this
mapping, and maximum likelihood allows us to minimize the estimation error of the
parameters at each step in the Kalman filter cycle. Figure 6 shows the steps in the
estimation cycle which are detailed more precisely in [12].

5 Target Setting and Final Parameter Setting

In the estimation of GEMS models the final parameter set, (3, is further constrained to
be close to a set of defined target values for the mean and standard deviation of the
simulated variables. These targets are set from analysis of the available data and ensure
that the models produce simulated values which are consistent across asset classes and
not biased, for instance by short data histories. These targets are met by constraining
the MLE estimation to combinations of parameters that have expectation values close
to the target values. In practice this is implemented by including a penalty function
in the final MLE functions such that we maximize the function;

k
‘C(ﬂ)/ = ‘C(ﬁ) - (Z Prﬁzean + Pfariance) (13)
Where P*_ and P*

N ean K iance Ar€ the values of the penalty function for the k™™ target and
the penalty functions are given by the square of the difference between the model value
for the parameter set 5 and the target value;

Pk = (ModelMean(3) — TargetMean)?

Pk = (ModelV ariance(3) — TargetV ariance)?

variance
For most models used in GEMS the expectation values of mean and variance given a
particular set of parameter values, (3, have explicit formula which aids efficient estima-
tion.

6 Model Re-Estimation

As a general principal we do not wish to re-estimate the parameters of models every
week, month, quarter or even year. Because the targets used in GEMS are at a long
term horizon we should expect that they are reasonably stable over short periods of
time. In the model building and maintenance process a balance must be struck between
parameter stability and keeping the models current. When using 25-30 years of history
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even several years of new data may lead to only small changes in the model parameters
and these may have little material impact on the final simulated distributions. Nev-
ertheless the model distributions in GEMS are reassessed if there is a major market
event, and are assessed anyway every two years. However the principal that is generally
applied is that a models parameters are only changed if it is apparent that significantly
better results could be obtained by reestimating the model with more current data. In
order to ensure parameters are stable, model parameters are generally only updated
when one of the following occurs;

e The model no longer matches the target values within tolerance.

e A specific problem is identified by which the model is no longer producing results
consistent with what is observed in the market.

e A model higher up in the cascade structure has been re-estimated requiring the
downstream models to be re-estimated in order to keep simulated values close to
targets values.

e Significant new data in the market suggests a structural change or change in
dynamics of the market.

When a parameter change is made it is communicated in the quarterly release note
for the economy effected. Tools are also available to aid users in reparameterising
the model to match a particular view of the market not already incorporated within

GEMS.

It is however important that the initial conditions of models (e.g. the initial yield curves
for government bonds) are updated prior to model use, and this task is performed on
a quarterly basis by Conning and tools are available such that users can update the
initial conditions of the models at higher frequency.

7 Conclusion

The maximum likelihood method and Kalman filtering are powerful techniques when
applied the estimation of a system’s dynamics, which can be combined to estimate the
parameters of a model of the system. In this document we have introduced both tech-
niques and some general principles of the filtering problem. The Kalman filter, under
certain conditions, represents the optimal filter for extracting novel information from
a sequence of observations (e.g. a time series of financial data). The final solution for
the model parameters is determined using optimization, however in practice one must
exercise great care to ensure any theoretical boundary conditions are not violated by
the optimizer for a given model. The quality of the GEMS parameterisation over other
parameterisations originates primarily from the precise details of the implementation
of the methods described here, and from extensions such as the ability to simultane-
ously fit yield and bond return dynamics. The result of the parameterisation process
in GEMS is a model that captures a wide range of the features and dynamics of the
real data, and which performs well out of sample.
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